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SIGNIFICANCE AND EXPLANATION

>Penalty function minimization is a useful technique for converting

constrained optimization problems to simpler unconstrained optimization

problems. One difficulty with this approach has been the determination

of the size of an adequate penalty parameter. In this work we showspow

to choose precisely the penalty parameter in order to meet any preassigned

* accuracy. In addition we use penalty functions to obtain bounds on the

size of a solution of a constrained optimization problem without solving

it. We also show )ow ati results can be used to solve huge sparse linear

programs to any desired degree of accuracy.

* The responsibility for the wording and views expressed in this descriptive -

summary lies with NRC, and not with the author of this report.
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SOME APPLICATIONS OF PENALTY FUNCTIONS

IN MATHEMATICAL PROGRAMMING --

.J0. L. Mana- -.

1. Introduction

We consider in this work the constrained minimization problem

(1)min f(x), X:= nX
0e 1

where X and X are subsets of the n-dimensional real space Rn which

(1.2) min P(xa):= f(x) + AIQ(x)

where a is in R+, the nonnegative real line, and Q(x): X R such

that Q(x) =0 for x eX, else Q(x) > 0. We have two principal applica-

tions in mind regarding the penalty problem (1.2). The first application,

which employes in addition to (1.2) the recent boundedness and existence

results for monotone complementarity problems [10] and which is described

in Section 3 of the paper, gives existence and boundedness results for a

convex program obtained from (1.1) and the associated dual problem. In

particular we show in Theorem 3.1 that if there exists a point which is

feasible for a primal convex program and is interior to the constraints of

its Wolfe dual [12,5a, then the primal problem has a solution which is

easily bounded in terms of the feasible point, and that there is no duality

gap between the primal problem and its Wolfe dual. Theorem 3.2 shows that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.
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if there is a point which is interior to the constraints of a primal convex

program which is also feasible for the associated Wolfe dual, then the

Lagrangian dual [4,1] of the convex program has a nonempty solution set

which is easily bounded in terms of the feasible point, and in addition

there is no duality gap between the primal problem and its Lagrangian dual.

In Section 4 our main concern is the recasting by means of an exterior

penalty function of the standard linear programming problem as a quadratic

minimization problem on the nonnegative orthant in the spirit of previous

work [6,7,8]. The principal new result here is to show how to obtain a

precise value of the penalty parameter which allows us to satisfy the

Karush-Kuhn-Tucker optimality conditions [5] for the linear program to any

preassigned degree of precision. Theorem 4.1 shows that this can be done

by minimizing a convex quadratic function on the nonnegative orthant for

only two values of the penalty parameter. Iterative methods developed

in [6,7,8] can solve by this approach very large sparse linear programs

which cannot be solved by a standard linear programming simplex package [8].

Because of the key role played by exterior penalty functions in this

work, we give in Section 2 some fundamental results regarding these functions

in a form convenient for deriving our other results. Although some of these
I

penalty results are known under more restrictive conditions [3,2], some are

new. For example, Theorem 2.3 shows that by solving only two exterior

penalty function minimization problems, we can obtain an optimal point which

is feasible to any preassigned feasibility tolerance. Theorem 2.8 shows

that under rather mild assumptions each accumulation point of a sequence of

solutions of penalty functions, corresponding to an increasing unbounded

sequence of positive numbers, solves the associated constrained optimization

~ . * . . . . . .- .." ..*

S ... .. ...
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problem. Furthermore the corresponding sequence of products of the

penalty parameter and the penalty term tends to zero.

We briefly describe our notation now. Vectors will be column or row

* vectors depending on the context. For a vector x in the n-dimensional real

*space Rn, ((xfj will denote an arbitrary norm, while 1fxf4 will denote the
1p

nn

*is the i-th component of x; x~ will denote the vector in Rn with compo-

nents (x+)j max {x1,O}, i-,.,. A vector of ones in any real space

will be denoted by e. For a differentiable function L: R nxRm.R, V XL(x,u)

will denote the n-dimensional gradient vector (xuil.,n whe

* for f. Rn * -R, Vf(x) will denote the n-dimensional gradient vector. The

n n
set of vectors In Rn with nonnegative components will be denoted by R+.

-7 . 1
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S 2. Some Fundamental Properties of Exterior Penalty Functions

We collect in this section some fundamental properties of exterior

penalty functions in a form convenient for our applications and under more

general assumptions than usually given [3,1]. We begin with some elementary

but important monotonicity properties for solutions of penalty problems.

* 2.1 Proposition Let xic X0  be a solution of min P(x,cai) for 1-1,2
X 0IA

wi th o > a, 0. Then

(2.1) Q(x) Q(x1) f (x) f f(X2). P(X1 ,) c Px2 .Ci)

Proof Addition of P(x2,ci2) <P(x1,ca2) and P(x,,cil) P(x,,Q1 ), gives,

together with c > ci.,, the inequal ity Q(x2) Q(xl) which in turn

* ~together with P(x1 c) OL ~ 2,t) and mt1  0, gives fx)~fx)

We also have that

P(x1,ci..) P(x2,ct1) P(x2,ct2)0

2.2 Proposition Let inf f(x) > -,let at > 0 and let x(ct) e be such
X

that P(x(ct),c a min P(x,ct). Then

(2.2) f(x(ct)) <inf f(x)
xX

If x(a) EX then

(2.3) f(x(ct)) =min f(x)
xCX

Proof For any c > 0 pick x(e) e X such that

f(x(c)) < inf f(x) + c
XIE X

'4Z
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Then

C + inf f(x) > f(x()) - P(x(c),a) _ P(x(a), ) , f(x(")) ..9

X

Since x(a) does not depend on e, (2.2) follows by letting e approach

zero. If x(a) is also in X, then (2.3) is obviously a consequence of

( 2-' .2 ) . 0 ..

The following simple theorem shows how, for any desired feasibility

tolerance 6 > 0, solving the penalty problem (1.2) for only two values of

the penalty parameter a will yield a point x2  l0 such that Q(x2) < 6

and f(x2) < inf f(x). Hence if 6 chosen sufficiently small, x2  is anx X.: 

:

approximately feasible optimal solution for the minimization problem (1.1).

2.3 Theorem Let 6 > 0, a,1 > 0, let inf f(x) > --, let ReX and let
xeX

P(xl,a 1 ) =min P(x,al). If f() < f(x1 ) then R solves min f(x), else
xCX0  Xe

for ,

f(X) -f(x1 )

(2.4) a2 > a and a2> f(:.-f;x 1 )2 a2 6

it follows that

(2.5) x2 XO, Q(x2) <6, f(x2)< inf f(x)

where

P(x2,a2) min P(x,a 2 ), x2 C X0
X

. Proof First note that if f(x) I f(xl) then by (2.2) x solves min f(x).
xeX

Suppose now that f(^) > f(x1 ) and (2.4) holds. Then

p. .. . '.. .%'
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(2.6) f(x2) + c2Q(x2) < f(s) + a2Q(R) = f(R)

Hence by (2.4), (2.1) and (2.6) respectively it follows that

f(X) - f(x l ) f(i)- f(x2)

c2 > 2 Q(x2 )

which establishes the first inequality of (2.5). The second inequality of

(2.5) follows from (2.2). '

2.4 Remark Theorem 2.3 can be applied to obtain an approximate solution of

(1.1) in the sense of (2.5) as follows:

(a) Choose 6 > 0, a, > 0, 4EX.

(b) Compute xIeX 0 such that: P(xII) =min P(x,aI). If f(i)< f(xl),xeX o
stop, R solves (1.1). f •0

f(OX) - f (x1)(c) Choose a2 such that a2 > oh and a2  6 6
(d) Compute x2 X0 such that: P(x2 ,a 2 ) ramn P(x,Ot2 ).

X60

If a2 of step (c) is too large, an 04 such that a1 <&l <°2 can be chosen

to replace a1 and steps (a)-(b)-(c) are repeated. Also X may be replaced

when possible by some R e [^,x I n X such that f()<f(R).'
The next result shows that for a sequence of solutions {x.} of the

penalty problem (1.2) for an increasing unbounded sequence of penalty para-

meters {ai the sequence of penalties {Q(xi)} converges to 0 and the

sequence {f(x i)} converges to a lower bound for inf f(x), provided the
xeX

latter is finite. We do not require that the sequence {xi } have an

accumulation point here.

2.5 Theorem Let inf f(x) > -=, let {ai} be an increasing unbounded

sequence of positive numbers, let {xI} be a corresponding sequence of

points in X0 not in X such that P(xi,a i) min P(xai).
X
x.X0 .• ..-.. ..

. . - ._.

...- ':, :.-..-.-.....:.-...:...,... ..-.. ::.. ....-............... ,-i ...j . ....:.j -....... j.....
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Then :: S."

(2.7) lin Q(xt ) - 0 and lin f(xi) < Inf f(x).

i-em 'M xX

Proof By (2.1), the sequence {Q(x1 )} is nonincreasing and bounded below by

0 and hence converges to o and Q(x,) tQ, 2,... If Q >0 we get

from (2.5) by picking I sufffciently large such that at Z 2(f() -f(x,))/Q

where R X, that Q <. Q(xi ) _ Q/2 which is a contradiction. Hence Q " 0

and 1im Q(x1) - 0. Now again by (2.1), the sequence {f(x1 )} Is nondecreas-

Ing, and by (2.2) It Is bounded above by inf f(x). Hence {f(x)} convergesxeX

" to 7 and x;

f(x) < nff(x) 0 .-
xX"

To make the inequality in (2.7) an equality we need additional assump-

tions such as those given in the following corollary.

2.6 Corolla If in addition to the assumptions of Theorem 2.5, f is

Lipschltz continuous on X0 , that is for some K > 0

(2.8) If(y)- f(x)I _ KIly-xl 2  for all x, yeX 0

and there exists a constant i > 0 such that for each xeX 0  there exists

an x(x)e X such that

'- (297 lx ^ (x)l112 <_ Q(x) L
.4 

.'.,...

then

, (2.10) 1im f(xt) - inf f(x)
i4~ XEX

Proof For each xi there exists an £ X such that

. ,, -, , ., . ,. ,- ,- .- .. ,- ,, .- .... - ,. " . , ,... ,..- .- ,.,..',.-... :..- (.",,' .. '., .. '..'..'..'..'.-'.. ,.',, ,,: ,: .'.. ,..; .' ... • ,'
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Hence by (2.8) and (2.9)

(2.11) 0 < If(x) - f (i) Kf11 - xi112 ,~KiQ(x1)

Since by (2.7) lrn Q(x1) =0, it follows from (2.11) that

*(2.12) 1 fn f(R1) = ii f(x1)

From (2.11) and Xwe get the inequalities

-~ f(xi) + KiiQ(x 1)l f (-Xi) I inf f(x)
XX

Taking the limit as i lxo and using (2.7) gives

xCX i-- xeX

Hence lrn f(x1) * nf f(x). 0
xeK

2.7 Remark Condition (2.9) is satisfied if the feasible region X is convex

and satisfies an appropriate constraint qualification [9, Theorem 2.1). In

particular (2.9) holds in the special case when X Rn and is defined

by linear inequalities [9, Theorem 2.13.

We observe that in both Theorem 2.5 and Corollary 2.6 the sequence {x.

need not have an accumulation point. A stronger result is obtained if {x

has an accumulation point.

2.8 Theorem Let inf > and let {7 be an increasing unbounded

xX - 1-

sequence of positive numbers. Let {xI} be a corresponding sequence of points

in Xenot in X such that P(xiati) i P(xa ) with an accumulation point

X-X0 ..0.
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X If f and Q are lower semicontinuous at i, then Q(i) *0 and

Ssolves min f(x). Furthermore

(2.13) lrn mi Q(xi 0 for xi

Proof Let x i CX. From (2.7) and the lsc of Q we have

0 *lim Q(x1 i Q(R) 1,0
i-KM

Hence Q~)*0 and ic X. From (2.7) and the lsc of f we have

JM j xX

Since ieX, it follows that i solves min f(x). To establish (2.13)
xdX

note that

0 P(xi 1 , P(i,as f(xi f(i) + a, Q(xi

Hence

f(R f (x1 ) Xi Q (x1 ) ~0

By letting J~m and recalling that f is lsc at it follows that

Ir im 3 Q(x1  0.0-- a
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3. Bounds and Existence for Dual Convex Programs

We consider in this section the convex primal program

(3.1) min f(x), X {xlxeR+, g(x)<O}

xCX

where f: Rn R, g: Rn -. Rm are differentiable and convex on Rn. The

Wolfe dual [12,5] associated with this problem is

n m n
((3.2) max L(x,u) - vx, Y {(x,u,v) xe R , u E R v e R+

V L(x,u) - v 01x

and the Lagrangian dual [4,1] is

(3.3) max inf L(x,u) -vx

(u,v)>O xERn

where L(x,u):s f(x) + ug(x) is the usual Lagrangian. Note that (3.2) is

equivalent to

(3.2') max L(x,u) - x L(x,u), Z = {(x,u) xeRn, ueR+,
(xu)eZ (xU)

Vx

• nNote that (3.1) can be identified with problem (1.1) by setting X0  R

and X= {xlg(x)<O}.

Our primary objective here is to give simple conditions for the separate

existence of a solution to each of primal and Lagrangian dual problems and to

bound their solutions. Loosely speaking we shall establish existence of a

solution and a bound for the primal (Lagrangian dual) problem under a primal

and Wolfe-dual feasibility assumption together with a Wolfe-dual (primal)

constraint interiority assumption. Our principal tools will be the recent

. ... .
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boundedness and existence results for monotone complementarity problems and

convex programs of [10] and the penalty function results outlined in the

previous section. We begin with an existence and boundedness result for the

primal problem (3.1).

3.1 Theorem (Primal feasibility & Wolfe dual interior-feasibility Primal

solution existence-boundedness & zero duality gap with Wolfe dual) Let f

and g be differentiable and convex on Rn and let (RO) satisfy

xe€X, ('X,U^) ,Z, VxL{R,U^) > 0 :::::

Then there exists a primal optimal solution to (3.1) which is bounded by

-Gg(x) + RVxL(R,0)
(3.4) II 11xLi

In addition there exists no duality gap between the primal problem (3.1) and

the Wolfe dual (3.2), that is:

(3.5) min f(x) = f(R) a sup L(x,u) - vx
xeX (x,u,v)cY

Proof Consider the penalty function problem associated with (3.1)

(3.6) min f(x) + oeg(x)+
x>O

or equivalently

(3.6') min f(x) + oez s.t. g(x) - z < 0~~~(x,z)>o..-0

The Wolfe dual associated with (3.6') is

.- " Z-.
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(3.7) max L(x,u) + z (e- u- w) -vx
(X*ulvtw)

s.t. V L (x, u -v 0, cae -u -w u ( ,V, w > 0x

which is equivalent to

* 37)max L(x,u) -xv L(x,u) s.t. V L(x,u) ) 0, ce >u > 0
(x,u)XX

Note that the only difference between (3.71) and (3.2') is the constraint

ae > u. Now, for any e > 0, the point (AX, i:= ee, 0i) satisfies a

"Slater" constraint qualification for the dual problems (3.6l)-(3.7') for

cL > IjuilJJ. Hence these probems have equal extrema and a solution

(x(a), z(c*), u(a)) such that x(ct) is bounded by [10, Theorem 2.3)

(3.8) Jx~tIimm (~( i

Since the left side of (3.8) does not depend on e, we can let e - 0 in

(3.8) and we have

m V L(,)x

Note now that by the weak duality theorem [5] applied to (3.1) and (3.3) we

have

inf f(x) > L(R,d) R V L(2,U1) > -

xeX X

Hence for an unbounded increasing sequence of positive numbers {at. exceed-

ing Jiiiit follows [10, Theorem 2.3] that there exists a sequence of



-13-

points {x(ci), u((%)} with x(ct ) bounded as in (3.9), such that each x( t) 4

solves the penalty function problem (3.6) with a - and (x(at), u(at))

solves its dual (3.7'). Since {x(a1 )} is bounded it has an accumulation

point i which is bounded by (3.9). Since ez(a1) * e(g(x(ci1)))+ is the penalty

term for (3.6'), it follows by Theorem (2.8) that el * eg(i)+ 0 0, that

solves min f(x) and that
X

(3.10) lim O ez(at ) * lim t e(g(x( t )))+ a 0 for x( ) * (a,j.40 j.WS j..'j'

Now we establish the zero duality gap. Let {cit be any decreasing sequence

of positive numbers converging to 0 and let {at} be an unbounded increasing

sequence of positive numbers chosen as follows:

> sup L(x,u) - xVxL(x,u) - i

(x~u)e -L

(By weak dual ity theorem)

< L(x(c1), u(ci)) - x(ei)V L(x(¢i), u(ti))

(For some (x(e), u(c1)) cZ, by definition of sup)

SL(x(ai), u(a1)) -x(cti)VxL(x(ai), u(ct1))

(For at sufficiently large s.t. ct>_Jlu(€t)1, .

because (x(ct), u(a1)) solves max L(x,u)- XL(xu)

S.t. 7 L (x,u) >0, az e > u > 0)

- f(x(xt)) + Ctiez(at)

(By equality of primal-dual optimal objective func-

tions of problems (3.6') and (3.71') with a - ct)"

X sup {L(x,u)-xVxL(X,u)IVxL(X,u)_>0, ate>u>01
(x,u) x2

< sup L(x,u) - XVxL(xu) '-
(x,u)Z ,

Z,*.. .

* * ' ,'- , " °=.,* 
"  

" % . '. *"%.. , . .,.. . ' e= ., 
•  

o , °% %' '.* .' - .o...,.%° °" . ' '

,.. . . . -., _. -:.. - .. ,. .- -.. .". . , _._. . _;. _ ¢ .;.'.. . . :.- ,,.. .',,'.,.',:.'.. .



-14-

Since by (3.10), 1r i'm a ez(s 1 ) 0 for x(csa +i it follows that

sup L(x,u) -xv L(x,u) *fMi min f(x) 0
(x,u)CZ XxCX

We establish now an existence and boundedness result for the Lagrangian

dual problem (3.3).

3.2 Theorem (Wolfe-dual feasibility & primal interior-feasibility

Lagrangian dual solution existence-boundedness & zero duality gap with primal)

Let f and g be differentiable and convex on Rn and let (v) satisfy:

(3.11) ie X, g, a)EZ > 0, g( M < 0

There exists a dual optimal solution (i) to 'the Lagrangian dual (3.3)

which is bounded by

(3.12) IuvIi m - 1 ~,~

In addition there is no duality gap between the primal problem (3.1) and the

Lagrangian dual (3.3), that is:

(3.13) inf f(x) = max inf L(x,u) -xv

xeX (u,v)>0O xeRn

Proof For B > 0 consider the bounded version of (3.1)

(3.14) min f(x) s.t. g(x) <0, Be >x > 0

and its Wolfe dual
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(3.15) max L(x,u) - x + w(x- se)

SAt. 7 L(x.u) -v + w *0, U, V, W > 0

or equivalently

(3.15') max L(x,u) - V L(x,u) SeBw
(x~u~w)X

St. V L(x,u) + w > 0, u, w > 0x

which again is equivalent to

(3.15") max L(x,u) - xV L(x,u) - oe(-VxL(x,u))+
(x,u) X
U>0

which is nothing other than an exterior penalty function formulation for the

Wolfe dual (3.2') with penalty parameter S. Thus the bound B on the a-norm

of the primal variable x becomes a penalty parameter on the Wolfe dual.

Now for any e > 0, the point

(~Si~:*ce)

satifies a Slater constraint qualification for the dual problems (3.14)-(3.151)

for B > II,.Hence [10, Theorem 2.3) there exists NO(), u(B), v(B),w(B))

which solves the dual problems (3.14)-(3.15) with equal extrema. For any such

sol ution, (u (0), v (0)) i s bounded by [10, Theorem 2.2)

(3.16) u (a), v ()1h
min {-g (R), i

Since the left side of (3.16) does not depend on e, we can let e 0 in

(3.16) and we have
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(3.17) IWO(), V(8)I 69 i)i mmX {g (, U)

min -ij)

Define now

(3.18) *(u,v):- inf L(x,u) -vx

(3.19) *$u,V,W):- inf L(x,u) -vx +wx

Then

(3.20) 0 (u,v) = i~u,v,O)

Note now that by the weak duality theorem (51

S> f(x) sup L(x,u) V xVL(X,u)
(x~uhZ

Hence for an unbounded increasing sequence of positive numbers {.1exceed-

ing jI1II*, it follows [10, Theorem 2.3) that there exists a sequence of

poins {(Oi9u(dP (Oiw(i~jwhich solve the dual pair (3.10-03.15)

for 0 - 8i~, giving equal extrema and such that fu($ ),v(8) is bounded by

(3.17). Since e 1  =e(-V L(x(Oi),u(Oi))+ constitutes the penalty term

for (3.15"), it follows by (2.7) that few(O1)1 converges to zero and since

w (B1) 0, it follows that {w($,)} also converges to w a 0. Let (G,i.0)

be an accumulation point of the bounded sequence Ms( )v(81),w(81) Now

we have

c:= L(R,6i) RV XVL(i,a) inf f(x) (By weak duality)
XE X

< fWY8.) (Since x (a8.)(X)

< L(x(B.), u (s.)) - v(B.)x(8) + w(8)x(s.)

(Since u(O Og~x(B)) 0, v(B.)x(s.)0oand w(B.)x(8) 10)
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<-L(x.u(81)) " v(Bi)x + w(01 )x Vx eRn

(Since VxL(x($), u(B))- v(8i) +w(i) - 0

L(x,u(B1))-v(81 )x+w(1 )x is convex in x)

In the limit we have

c < L(x,G) ;x + ;x Vx E Rn

and so

c < inf L(x,G) - ;x + ;-
XCRn

Since is finite, it follows by Theorem A.1 of the Appendix, that 4...
*(u,v,w) is upper semicontinuous at , with respect to Rm+2n. Now

let {et} 0 0. It follows by the upper semicontinuity of *(u,v,w) at

, that there exists a subsequence (0f i + - of the unbounded increas-

ing sequence {B} such that uO), v(O1  w( 1  converges to

(, , 0) and

(3.21) *( , ) + - + ej

> * i v(s tj'w( Oj

(By usc of i at 1 ,;, ))
= inf L(x,u($1 ))-v(B )x+w(Bj )x

(By definition of )

- L (x(B1 ), u((0 )) - v (B )x (B1 ) +w(Bi)x(B1 ) .. ,

(Since x(81 ) minimizes L(x,u($ ))-v(BI)X+w(B )x)'
Si~ Si+~o )x)S

* ~'.' * *. . * S * *"% .

* . . S * -

-,o --, ,.,, .-.-.- , . ...... .. . .. . .. . . . .. ,. • ";., "-. .-"... .
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f f(x (01

(Since u(81 )gx(s1 ))=O.v(s1 )xs1 )u

and w(s1 )x(o1 )'!O)

I L(x(81 ) u(81  ) vx(81  for (u,v) 0

(Since g(x(8O )10 and x(O ),1O)

I (u,v) (By definition of *

Note that for (.}+ w.the sequence ff(x(S1 )) of minima of (3.14)

with a 0 constitutes a nonincreasing sequence bounded below by

inf f(x). Hence {f(x(O.) converges and
xeX

(3.22) inf f(x) slim f(x(81 )
xex j-

Letting c~ 0 in the string of inequalities of (3.21) gives

O(M~,) I~ ur f(x(8. )) O (u'v) V(u,v) >0

Hence

(3.23).*~~ lim f(x(O.) max O(u,v) * max inf L(x,u) -vx1j (U'v>0 (u ,v )zO xeRn

and solves the Lagrangian dual problem (3.3). The bound (3.12) on

Sfollows from (3.17). To show a zero duality gap, just note that

inf f(x) <lim f(x(8. ) max O(u,v) <inf f(x)
xeX j-*w (U'v)1>0 XLEX

ZI
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where the first inequality follows from (3.22), the equality from (3.23)

and the last inequality from the weak duality theorem for the Lagr~ngian

dual [4.1. Hence

inf f (x) a max 0(u,v) 0
XEX (u'v)IO

We remark that the existence part of this theorem and the zero duality

gap result can also be derived as a consequence of the strong duality theorem

of Lagrangian duality (e.g. [4, Theorem 3)) which is based on the entirely

different argument of a separating hyperplane. Our explicit bound on the

dual optimal variables (3.12) however does, not follow from Lagrangian duality

and is based on the recent boundedness resul ts of [1 0].
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4. Penalty Functions in Linear Programming

In this final section we show how to use penalty function results to

determine precisely the value of the parameter in the quadratic perturbation

to a linear program [6,7,8] in order to obtain a solution to the perturbed

problem which is dual feasible to within any preassigned tolerance. This

is a practical and important issue which has not been completely resolved

before in the iterative successive overrelaxation (SOR) methods for solving

huge sparse linear programs [8].

We consider the primal linear program

(4.1) max cx s.t. Ax < b, x > 0
x

where A is given mxn real matrix, ccRn and b Rm , and its dual

(4.2) min bu s.t. v ATu c, u,v > 0
(uv)

In [8] it has been shown that perturbed primal prograhm

(4.3) max cx - xx s.t. Ax < b, x > 0

x

is solvable for all cc (O,iJ for some i if and only if (4.1) is solvable,

in which case the unique solution R of (4.3) for cc (O,i] is independent

of c and is the point in the solution set of (4.1) with least 2-norm. If

we consider the Wolfe dual to (4.3) we obtain

(4.4) min bu + Yxx s.t. c - cx - u + v = O, u, v > 0

(xIuv)

Elimination of x through the constraint relation

(4.5) x -(-ATu +v +c)

* .. *.. ,.. *.. .- .. *.,.* .: ...* . .. ;*.'.,. : ...... : :-: ...:....,'.'. . ..........-. .,.....: . ,-. .-. - .... .-, , , -. - :.
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gives

(4.6) min bu + lI-Au+cl "2

which is precisely the exterior penalty function associated with the dual
linear program (4.2.) with penalty parameter . Using standard exterior

penalty function results, one needs that e * 0 in order for solutions

(u(e),v(c)) of (4.6) approach a solution of the dual linear problem (4.2).

However by computing R from (u(c), v(c)) through the relation (4.5), it

turns out E8 that for cc (0,ij, i is independent of e and is the unique

point in the solution set of (4.1) with least 2-norm. In [8] SOR methods

were prescribed for solving (4,6) for c sufficiently small and then comput-

ing x from (4.5). Very large sparse problems (n - 20,000, m - 5,000) were

solved by this technique, without knowing what is, but merely by decreas-

ing £ until certain approximate optimality criteria were met. We would

like to show here that by solving the penalty problem (4.6) for only two

values of c, we can satisfy the Karush-Kuhn-Tucker optimality conditions

for the linear program to any preassigned tolerance. In fact such a solution

will be primal feasible, satisfy the complementarity conditions between primal

and dual linear programs, and satisfy dual feasibility to any required toler-

ance. More specifically we have the following.

4.1 Theorem Let 6 > 0, c1 > 0, let (uV) be dual feasible, that is

v AT - c > 0, 0 0, and let (U(e), v(l)) be a solution of (4.6) with

C l" If bu < bu(Cl) then (0,v) solves the dual problem (4.2), else for

(4.7) £2 < l and c2 < b.,-.''...mbu - bu (El I_

. . .. %

.- v .. . -.-... --v --.. v -...- -- .. -.-. ... -. .. ... .-- .... .. ..-.... .---. . .. -. , .-.. .- -. . . -- .
. oi **o .. . ' °• °.. o- 

° -
. 'o. .,.. . . . . . . . . . . . . .... . . . ..•. . ..". . ..-. ... . .., o" • -° . .- , °,.. -. -...- ' . °.-' .o ..- '

: :. .. ; '., . .".- ._, ,. .... . .... ..'.'..'.*.. .. . . . . .... . .,. .,,. .. . .. ,. .,,.: .,., .,. ,. . ,, .' ... ; ., ,
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it follows that

(481 l.Tu(E2 +vc)cl 2  :'
(4.8) 1A < 6, bu(C 2 ) I min {buJATuc, u>O}

where (u(e 2 ),v( 2 )) is a solution of (4.6) with e * {2* Furthermore for

x(£ 2 ) defined by

* 2(491~ (.ATu (E:2) + v"+
(4.9) x({:~2):' e 2  +( 2  '

we have that the Karush-Kuhn-Tucker conditions for the linear program (4.1)

are satisfied to within a tolerance 6 as follows

x(£2 ) > 0, Ax(e 2 ) < b, u(e2 ) > 0, v(c 2 ) 0

(4.10) u(C 2 )(b-Ax(£ 2 )) 0, -v(ox(c2  0

T 1
-Au (e) +v(e 2 ) +cJ 2 < (28)7

Proof The first part of the theorem, (4.7)-(4.8), follows directly from

Theorem 2.3. The last part of the theorem (4.10) follows from (4.8) and

from the Karush-Kuhn-Tucker optimality conditions for (4.6) with C - £2

that is

1 Tb - - A(-A u({2)+v(£2)+c) >0O, u(2) > 0

( . A(.ATu({2) +v( 2 ) + c) -0
(4.11) 2

_ L A(.ATu(2)+v2)C > 0, v({2) > 0
2

e (ATu (£2) + v( 2 ) +c) = 0

£2

These conditions together with (4.8) and the definition (4.9) imply (4.10). 0

% %%

5,. .. .

.5'::

:.4% , o. % . . . o o. % . . . . . - . . % . . I . . . . . . o . - % o . . .- .% , . .- % - .
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Appendix p

A. Theorem Let *(s):- inf h(s,t) where h: S x T -- R, 0 A S .Rk,

toET

0 T c Rn and h is upper semicontinuous on S with respect to S for

each fixed t E T. Then i is upper semicontinuous with respect to S at

each e S for which i(i) -

Proof Suppose i is not usc at , with respect to S. Then

(A.1) c > 0: vS > 0 ]s(6) e S: lls(6) -ill < 6, (s(8))-4() > - C

Let e be fixed. Since -- < (i) i tnf h(i,t), there exists t(c) ET p.
teT

such that

(A.2) h(i, t(e)) < *(i) + e

Combining (A), (A.2) and the definition of * gives

/ h(l, t(c)) < ip(i) + e < *(s(6)) I h(s(6), t(e))

(A.3) V6 > 0, for some s(6) e S such that Ils(a)- i11 <6 L..

Since h(s, t(c)) is usc with respect to S at e c S we have

(A.4) Vy > 0, ]6 (y) > 0: Vs £S Its- ill < 6(y), h(s, t(£)) < h(i, t(e)) +y

Combining (A.3) and (A.4) gives

(A.5) h(i, t(c)) < 0(i) + £ < h(i, t(c)) + y Vy > 0

Since i and £ do not depend on y, (A.5) gives a contradiction by letting

y approach zero. Hence p is usc at i with respect to S. 0

L|

-. 7.,: .1 .o"-
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